ブログの説明

学校に通わないで学んだことを記しています。間違っているところが何かありましたらご指摘下さると幸いです。コメントに対する返信が遅れる可能性があります。その場合は申し訳ございません。

このブログでは広告を表示しています。このブログ内の投稿記事を検索するには右上の拡大鏡のアイコンを、アーカイブやラベル付けから投稿記事を閲覧するには左上の三重線のアイコンをクリックして下さい。

数式の表示にはMathJaxを利用させていただいています。数式の表示のためにJavaScriptが有効である必要があります。そうでない場合、訳の分からないLaTeXのコードが表示されます。幾何学図形やチャートの表示にはHTML5 CanvasやGoogle Chartを使用しています。その表示のためにもJavaScriptが有効である必要があります。

円周、円弧、扇の面積、円の面積、球体の表面積、球体の体積、円柱と円錐の体積

円周

あなたのブラウザはCanvas要素に対応していません。
C:=r:=π:=π=3.141593...C=2πr=2×3.141593...×r

円周えんしゅうとは円の周りの長さのこと。英語では円周のことをcircumference(サーカムフレンス)と呼んでいる。-cum-に発音上の強勢がある。

円の半径はんけいは円の中心から周りまでの長さのこと。英語では円の半径のことをradius(レイディアス)と呼んでいる。

円の半径は円の直径の半分。半径をrとし、直径(diameter)をdとすると、r=d2と表わすことができる。

円ではその半径がどこを測っても等しい。

円周率えんしゅうりつはギリシア文字のΠ(ピ)の小文字であるπを用いて表され、英語式にパイと呼ぶ慣わしがある。

円周率は数学定数と呼ばれている定まった数。ただしそれを10進法で表わすと3.141593...のように無限に続く可能性がある。円の直径(diameter)をdとし、円周をCとすると、円周率π=Cdと定義されている。

円周率は分数の形では表わすことができないことが分かっているために無理数むりすうとして知られている。円周率は代数的な数として表わすことができないことが分かっているために超越数ちょうえつすうにも分類されている。

円弧

円弧えんこは円周の任意の部分、したがって円周の一部、言い換えれば円の断片を指す。閉じていない円周とも開いた円周とも見なすことができる。

単にと呼んだ場合には円の一部ではなく、任意の2点間を結ぶ曲線一般のことを指している。

英語では円弧も単なる弧もこのどちらもan arc(アーク)と呼ばれている。特に円弧を表す場合にはthe arc of a circleのように言うことができる。

あなたのブラウザはCanvas要素に対応していません。

円弧は円の中心から任意に伸びた半直線によって切断された円周の一部として定義でき、その半径と中心角ちゅうしんかうによってその大きさを求めることができる。

円弧の長さ(the arc length)は次のような代数式によって計算できる。ただし中心角ちゅうしんかくの大きさが弧度法こどほうによって測られることに要注意。

L:=r:=θ:=L=rθ

度数法どすうほうを弧度法に直すには度数法の値をπ180倍する。

度数法による中心角θで円弧を計算する場合には次のような代数式を用いることができる。

θ:=L=θ×π180×r=π180rθ

扇形おうぎがたの面積

扇形は英語ではa circular sectorやa circle sectorやthe sector of a circleなどと呼ばれている。扇形の面積は英語でthe area of a circular sectorなどと言うことができる。

扇形の面積は円の中心から放射状に外に伸びる半直線に挟まれた円弧によって閉じられた平面領域を指している。

あなたのブラウザはCanvas要素に対応していません。

扇形の面積は次の代数式によって計算することができる。ただし中心角はラジアンでなくてはならない。

A:=θ:=π:=3.14159265...r:=A=θ2ππr2=θ2r2

度数法をラジアン(弧度法)に変換するには度数法の値をπ180倍する。

θ:=A=π180θ2r2=π180θ×12r2=π180×2θr2=π360θr2

円の面積

あなたのブラウザはCanvas要素に対応していません。
Aci:=r:=π:=π=3.141593...Aci=πr2=3.141593...×(r×r)

円の面積は英語ではarea of a circleと呼ばれている。

公式を見ると、円の面積は、一辺がr(円の半径)の長さを持つ正方形の面積の円周率(3.141593...)倍であることが分かる。

Aci=3.141593...×r
あなたのブラウザはCanvas要素に対応していません。

球体の表面積(球面積)

あなたのブラウザはCanvas要素に対応していません。
SAsp:=r:=π:=π=3.141593...SAsp=4πr2=4×3.141593...×(r×r)

球体の表面積ひょうめんせきは英語ではsurface area of a sphereと呼ばれている。

球体の半径とは球体の中心から表面までの長さ。球体ではその半径がどこを測っても等しい。

公式を見ると、球体の表面積は、その球体の中心部を通るように真っ二つに切断したときの断面の面積(円の面積)の4倍であることが分かる。

=4×

球体の表面積はそれと外側に接する円柱の上下の円を取り除いた側面だけの表面積、つまり長方形の面積と等しい。要するに、この円柱の高さは球体の半径の2倍なので2rとなり、円柱の長さは球体の円周になるので2πrとなる。よってこの円柱の側面の広さは次のようになり、球体の表面積と同じ式で計算することができる。

あなたのブラウザはCanvas要素に対応していません。
=2r×2πr=22πr2=4πr2=4×3.141593...×(r×r)=

球体の体積

あなたのブラウザはCanvas要素に対応していません。
Vsp:=r:=π:=π=3.141593...Vsp=43πr3=4×3.141793...3×(r×r×r)=4×(r×r×r)3×3.141593...=1.333333...×3.141593...×(r×r×r)

球体の体積たいせきは英語ではvolume of a sphereと呼ばれている。

面積では半径の2じょうであったのに対して体積では半径が3乗になっているのが分かる。半径の2乗に立体の奥行きが加わって3乗になった。

4分の3は小数として表わすと1.33333...になる。掛け算の単位元たんいげん1に加えて小数点以下に3が繰り返す循環じゅんかん小数。

球体の体積はその外側にぴったりと接する円柱えんちゅうの体積の3分の2であることが知られている。

あなたのブラウザはCanvas要素に対応していません。
Vsp:=Vcy:=Vsp=23Vcy=0.66666...×Vcy

円柱は英語ではcylinderと呼ばれている。日本語読みをすればシリンダー。

3分の2を小数に直すと0.66666...という循環小数になる。

円柱の体積

あなたのブラウザはCanvas要素に対応していません。

円柱の体積は次の式によって得ることができる。

Vcy:=h:=r:=:=ππ=3.141593...Vcy=πr2h=3.141593...×(r×r)×h

ちなみに、円錐えんすいの体積はその外側にぴったりと接する円柱の体積の3分の1であることが知られている。

あなたのブラウザはCanvas要素に対応していません。

そしてこれらのことから次のことが明らかになる。

Vcy:=hcy:=Vsp:=rsp:=Vco:=hco:=hcy=hco=rci2Vcy=πr2h=2πr3Vcy=Vsp+Vco2πr3=43πr3+2×13πr3=43πr3+23πr3
あなたのブラウザはCanvas要素に対応していません。

円柱の体積は、その円柱の内側にぴったりと接する円錐の体積と、その円柱の内側にぴったりと接する球体の体積との合計。円柱の内側にぴったりと接する円錐とは、その底辺の円の半径が円柱のそれと同じで、かつ、その高さも円柱と同じもの。円柱の内側にぴったりと接する球体とは、その球体の半径が円柱の半径と同じで、かつ、その球体の直径がその円柱の高さと同じもの。

円柱状の鉄の固まりが一つあったとすると、それを溶かし、同じ半径と同じ高さを持つ円錐一つと、円柱の高さと同じ直径と同じ半径を持つ球体一つを作ることができる。

円柱と円錐の表面積、そしてまた、楕円と(回転)楕円体についてはまたの機会に。

コメント

このブログの人気の投稿

LATEXで数式:指数と順列などで使う添数・添字

10の補数と9の補数と2の補数と1の補数

LibreOffice 6 Calcでフォーム(ダイアログ)を作成してマクロで表示